
3-1

Learn Visual Basic 6.0

3. Exploring the Visual Basic Toolbox

Review and Preview

· In this class, we begin a journey where we look at each tool in the Visual Basic
toolbox. We will revisit some tools we already know and learn a lot of new
tools. First, though, we look at an important Visual Basic functions.

The Message Box

· One of the best functions in Visual Basic is the message box. The message
box displays a message, optional icon, and selected set of command buttons.
The user responds by clicking a button.

· The statement form of the message box returns no value (it simply displays
the box):

MsgBox Message, Type, Title

where

Message Text message to be displayed
Type Type of message box (discussed in a bit)
Title Text in title bar of message box

You have no control over where the message box appears on the screen.

· The function form of the message box returns an integer value
(corresponding to the button clicked by the user). Example of use (Response
is returned value):

Dim Response as Integer
Response = MsgBox(Message, Type, Title)

· The Type argument is formed by summing four values corresponding to the
buttons to display, any icon to show, which button is the default response,
and the modality of the message box.

3-2 Learn Visual Basic 6.0

· The first component of the Type value specifies the buttons to display:

Value Meaning Symbolic Constant
0 OK button only vbOKOnly
1 OK/Cancel buttons vbOKCancel
2 Abort/Retry/Ignore buttons vbAbortRetryIgnore
3 Yes/No/Cancel buttons vbYesNoCancel
4 Yes/No buttons vbYesNo
5 Retry/Cancel buttons vbRetryCancel

· The second component of Type specifies the icon to display in the message
box:

Value Meaning Symbolic Constant
0 No icon (None)
16 Critical icon vbCritical
32 Question mark vbQuestion
48 Exclamation point vbExclamation
64 Information icon vbInformation

· The third component of Type specifies which button is default (i.e. pressing
Enter is the same as clicking the default button):

Value Meaning Symbolic Constant
0 First button default vbDefaultButton1
256 Second button default vbDefaultButton2
512 Third button default vbDefaultButton3

· The fourth and final component of Type specifies the modality:

Value Meaning Symbolic Constant
0 Application modal vbApplicationModal
4096 System modal vbSystemModal

If the box is Application Modal, the user must respond to the box before
continuing work in the current application. If the box is System Modal, all
applications are suspended until the user responds to the message box.

· Note for each option in Type, there are numeric values listed and symbolic
constants. Recall, it is strongly suggested that the symbolic constants be used
instead of the numeric values. You should agree that vbOKOnly means more
than the number 0 when selecting the button type.

Exploring the Visual Basic Toolbox 3-3

· The value returned by the function form of the message box is related to the
button clicked:

Value Meaning Symbolic Constant
1 OK button selected vbOK
2 Cancel button selected vbCancel
3 Abort button selected vbAbort
4 Retry button selected vbRetry
5 Ignore button selected vbIgnore
6 Yes button selected vbYes
7 No button selected vbNo

· Message Box Example:

MsgBox “This is an example of a message box”, vbOKCancel +
vbInformation, “Message Box Example”

· You've seen message boxes if you've ever used a Windows application. Think
of all the examples you've seen. For example, message boxes are used to
ask you if you wish to save a file before exiting and to warn you if a disk drive
is not ready.

Object Methods

· In previous work, we have seen that each object has properties and events
associated with it. A third concept associated with objects is the method.
A method is a procedure or function that imparts some action to an object.

· As we move through the toolbox, when appropriate, we'll discuss object
methods. Methods are always enacted at run-time in code. The format for
invoking a method is:

ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

3-4 Learn Visual Basic 6.0

The Form Object

· The Form is where the user interface is drawn. It is central to the
development of Visual Basic applications.

· Form Properties:

Appearance Selects 3-D or flat appearance.
BackColor Sets the form background color.
BorderStyle Sets the form border to be fixed or sizeable.
Caption Sets the form window title.
Enabled If True, allows the form to respond to mouse and

keyboard events; if False, disables form.
Font Sets font type, style, size.
ForeColor Sets color of text or graphics.
Picture Places a bitmap picture in the form.
Visible If False, hides the form.

· Form Events:

Activate Form_Activate event is triggered when form
becomes the active window.

Click Form_Click event is triggered when user clicks on
form.

DblClick Form_DblClick event is triggered when user
double-clicks on form.

Load Form_Load event occurs when form is loaded.
This is a good place to initialize variables and set
any run-time properties.

· Form Methods:

Cls Clears all graphics and text from form. Does not
clear any objects.

Print Prints text string on the form.

Examples

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form"

Exploring the Visual Basic Toolbox 3-5

Command Buttons

· We've seen the command button before. It is probably the most widely used
control. It is used to begin, interrupt, or end a particular process.

· Command Button Properties:

Appearance Selects 3-D or flat appearance.
Cancel Allows selection of button with Esc key (only one

button on a form can have this property True).
Caption String to be displayed on button.
Default Allows selection of button with Enter key (only one

button on a form can have this property True).
Font Sets font type, style, size.

· Command Button Events:

Click Event triggered when button is selected either by
clicking on it or by pressing the access key.

Label Boxes

· A label box is a control you use to display text that a user can't edit directly.
We've seen, though, in previous examples, that the text of a label box can be
changed at run-time in response to events.

· Label Properties:

Alignment Aligns caption within border.
Appearance Selects 3-D or flat appearance.
AutoSize If True, the label is resized to fit the text specifed by

the caption property. If False, the label will remain
the size defined at design time and the text may be
clipped.

BorderStyle Determines type of border.
Caption String to be displayed in box.
Font Sets font type, style, size.

3-6 Learn Visual Basic 6.0

WordWrap Works in conjunction with AutoSize property. If
AutoSize = True, WordWrap = True, then the text
will wrap and label will expand vertically to fit the
Caption. If AutoSize = True, WordWrap = False,
then the text will not wrap and the label expands
horizontally to fit the Caption. If AutoSize = False,
the text will not wrap regardless of WordWrap
value.

· Label Events:

Click Event triggered when user clicks on a label.
DblClick Event triggered when user double-clicks on a label.

Text Boxes

· A text box is used to display information entered at design time, by a user at
run-time, or assigned within code. The displayed text may be edited.

· Text Box Properties:

Appearance Selects 3-D or flat appearance.
BorderStyle Determines type of border.
Font Sets font type, style, size.
MaxLength Limits the length of displayed text (0 value indicates

unlimited length).
MultiLine Specifies whether text box displays single line or

multiple lines.
PasswordChar Hides text with a single character.
ScrollBars Specifies type of displayed scroll bar(s).
SelLength Length of selected text (run-time only).
SelStart Starting position of selected text (run-time only).
SelText Selected text (run-time only).
Tag Stores a string expression.
Text Displayed text.

Exploring the Visual Basic Toolbox 3-7

· Text Box Events:

Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. This

is a good place to examine the contents of a text
box after editing.

KeyPress Triggered whenever a key is pressed. Used for key
trapping, as seen in last class.

· Text Box Methods:

SetFocus Places the cursor in a specified text box.

Example

txtExample.SetFocus ' moves cursor to box named txtExample

3-8 Learn Visual Basic 6.0

Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a
password. If correct, a message box appears to validate the user. If
incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form so it
looks something like this:

3. Set the properties of the form and each object.

Form1:
BorderStyle 1-Fixed Single
Caption Password Validation
Name frmPassword

Label1:
Alignment 2-Center
BorderStyle 1-Fixed Single
Caption Please Enter Your Password:
FontSize 10
FontStyle Bold

Text1:
FontSize 14
FontStyle Regular
Name txtPassword
PasswordChar *
Tag [Whatever you choose as a password]
Text [Blank]

Exploring the Visual Basic Toolbox 3-9

Command1:
Caption &Validate
Default True
Name cmdValid

Command2:
Cancel True
Caption E&xit
Name cmdExit

Your form should now look like this:

4. Attach the following code to the cmdValid_Click event.

Private Sub cmdValid_Click()
'This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Tag Then
'If correct, display message box
 MsgBox "You've passed security!", vbOKOnly +
vbExclamation, "Access Granted"
Else
'If incorrect, give option to try again
 Response = MsgBox("Incorrect password", vbRetryCancel
+ vbCritical, "Access Denied")
 If Response = vbRetry Then
 txtPassword.SelStart = 0
 txtPassword.SelLength = Len(txtPassword.Text)
 Else
 End
 End If
End If
txtPassword.SetFocus
End Sub

3-10 Learn Visual Basic 6.0

This code checks the input password to see if it matches the stored value.
If so, it prints an acceptance message. If incorrect, it displays a message
box to that effect and asks the user if they want to try again. If Yes (Retry),
another try is granted. If No (Cancel), the program is ended. Notice the
use of SelLength and SelStart to highlight an incorrect entry. This allows
the user to type right over the incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form_Activate()
txtPassword.SetFocus
End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click()
End
End Sub

7. Try running the program. Try both options: input correct password (note it is
case sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to
allow the user to have just TRYMAX attempts to get the correct password.
After the final try, inform the user you are logging him/her off. You’ll also
need a variable that counts the number of tries (make it a Static variable).

Exploring the Visual Basic Toolbox 3-11

Check Boxes

· Check boxes provide a way to make choices from a list of potential
candidates. Some, all, or none of the choices in a group may be selected.

· Check Box Properties:

Caption Identifying text next to box.
Font Sets font type, style, size.
Value Indicates if unchecked (0, vbUnchecked), checked

(1, vbChecked), or grayed out (2, vbGrayed).

· Check Box Events:

Click Triggered when a box is clicked. Value property is
automatically changed by Visual Basic.

Option Buttons

· Option buttons provide the capability to make a mutually exclusive choice
among a group of potential candidate choices. Hence, option buttons work
as a group, only one of which can have a True (or selected) value.

· Option Button Properties:

Caption Identifying text next to button.
Font Sets font type, style, size.
Value Indicates if selected (True) or not (False). Only one

option button in a group can be True. One button
in each group of option buttons should always be
initialized to True at design time.

· Option Button Events:

Click Triggered when a button is clicked. Value
property is automatically changed by Visual Basic.

3-12 Learn Visual Basic 6.0

Arrays

· Up to now, we've only worked with regular variables, each having its own
unique name. Visual Basic has powerful facilities for handling multi-
dimensional variables, or arrays. For now, we'll only use single, fixed-
dimension arrays.

· Arrays are declared in a manner identical to that used for regular variables.
For example, to declare an integer array named 'Items', with dimension 9, at
the procedure level, we use:

Dim Items(9) as Integer

If we want the array variables to retain their value upon leaving a procedure,
we use the keyword Static:

Static Items(9) as Integer

At the form or module level, in the general declarations area of the Code
window, use:

Dim Items(9) as Integer

And, at the module level, for a global declaration, use:

Global Items(9) as Integer

· The index on an array variable begins at 0 and ends at the dimensioned value.
For example, the Items array in the above examples has ten elements,
ranging from Items(0) to Items(9). You use array variables just like any other
variable - just remember to include its name and its index. For example, to set
Item(5) equal to 7, you simply write:

Item(5) = 7

Exploring the Visual Basic Toolbox 3-13

Control Arrays

· With some controls, it is very useful to define control arrays - it depends on
the application. For example, option buttons are almost always grouped in
control arrays.

· Control arrays are a convenient way to handle groups of controls that perform
a similar function. All of the events available to the single control are still
available to the array of controls, the only difference being an argument
indicating the index of the selected array element is passed to the event.
Hence, instead of writing individual procedures for each control (i.e. not
using control arrays), you only have to write one procedure for each array.

· Another advantage to control arrays is that you can add or delete array
elements at run-time. You cannot do that with controls (objects) not in
arrays. Refer to the Load and Unload statements in on-line help for the
proper way to add and delete control array elements at run-time.

· Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the control
using the editor, then paste it on the form. Visual Basic will pop-up a
dialog box that will ask you if you wish to create a control array.
Respond yes and the array is created.

2. Create all the controls you wish to have in the array. Assign the desired
control array name to the first control. Then, try to name the second
control with the same name. Visual Basic will prompt you, asking if you
want to create a control array. Answer yes. Once the array is created,
rename all remaining controls with that name.

· Once a control array has been created and named, elements of the array are
referred to by their name and index. For example, to set the Caption property
of element 6 of a label box array named lblExample, we would use:

lblExample(6).Caption = “This is an example”

We'll use control arrays in the next example.

3-14 Learn Visual Basic 6.0

Frames

· We've seen that both option buttons and check boxes work as a group.
Frames provide a way of grouping related controls on a form. And, in the case
of option buttons, frames affect how such buttons operate.

· To group controls in a frame, you first draw the frame. Then, the associated
controls must be drawn in the frame. This allows you to move the frame
and controls together. And, once a control is drawn within a frame, it can
be copied and pasted to create a control array within that frame. To do
this, first click on the object you want to copy. Copy the object. Then, click
on the frame. Paste the object. You will be asked if you want to create a
control array. Answer Yes.

·
· Drawing the controls outside the frame and dragging them in, copying them

into a frame, or drawing the frame around existing controls will not result in
a proper grouping. It is perfectly acceptable to draw frames within other
frames.

· As mentioned, frames affect how option buttons work. Option buttons within a
frame work as a group, independently of option buttons in other frames.
Option buttons on the form, and not in frames, work as another
independent group. That is, the form is itself a frame by default. We'll see
this in the next example.

· It is important to note that an independent group of option buttons is defined by
physical location within frames, not according to naming convention. That
is, a control array of option buttons does not work as an independent group
just because it is a control array. It would only work as a group if it were
the only group of option buttons within a frame or on the form. So,
remember physical location, and physical location only, dictates
independent operation of option button groups.

· Frame Properties:

Caption Title information at top of frame.
Font Sets font type, style, size.

Exploring the Visual Basic Toolbox 3-15

Example 3-2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be entered by
simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second, draw
two option buttons, and in the third, draw six check boxes. Draw two option
buttons on the form. Add two command buttons. Make things look
something like this.

3. Set the properties of the form and each control.

Form1:
BorderStyle 1-Fixed Single
Caption Pizza Order
Name frmPizza

Frame1:
Caption Size

Frame2:
Caption Crust Type

Frame3
Caption Toppings

3-16 Learn Visual Basic 6.0

Option1:
Caption Small
Name optSize
Value True

Option2:
Caption Medium
Name optSize (yes, create a control array)

Option3:
Caption Large
Name optSize

Option4:
Caption Thin Crust
Name optCrust
Value True

Option5:
Caption Thick Crust
Name optCrust (yes, create a control array)

Option6:
Caption Eat In
Name optWhere
Value True

Option7:
Caption Take Out
Name optWhere (yes, create a control array)

Check1:
Caption Extra Cheese
Name chkTop

Check2:
Caption Mushrooms
Name chkTop (yes, create a control array)

Check3:
Caption Black Olives
Name chkTop

Exploring the Visual Basic Toolbox 3-17

Check4:
Caption Onions
Name chkTop

Check5:
Caption Green Peppers
Name chkTop

Check6:
Caption Tomatoes
Name chkTop

Command1:
Caption &Build Pizza
Name cmdBuild

Command2:
Caption E&xit
Name cmdExit

The form should look like this now:

4. Declare the following variables in the general declarations area:

Option Explicit
Dim PizzaSize As String
Dim PizzaCrust As String
Dim PizzaWhere As String
This makes the size, crust, and location variables global to the form.

3-18 Learn Visual Basic 6.0

5. Attach this code to the Form_Load procedure. This initializes the pizza size,
crust, and eating location.

Private Sub Form_Load()
'Initialize pizza parameters
PizzaSize = "Small"
PizzaCrust = "Thin Crust"
PizzaWhere = "Eat In"
End Sub
Here, the global variables are initialized to their default values,
corresponding to the default option buttons.

6. Attach this code to the three option button array Click events. Note the use of
the Index variable:

Private Sub optSize_Click(Index As Integer)
‘Read pizza size
PizzaSize = optSize(Index).Caption
End Sub
Private Sub optCrust_Click(Index As Integer)
‘Read crust type
PizzaCrust = optCrust(Index).Caption
End Sub
Private Sub optWhere_Click(Index As Integer)
‘Read pizza eating location
PizzaWhere = optWhere(Index).Caption
End Sub
In each of these routines, when an option button is clicked, the value of the
corresponding button’s caption is loaded into the respective variable.

Exploring the Visual Basic Toolbox 3-19

7. Attach this code to the cmdBuild_Click event.

Private Sub cmdBuild_Click()
'This procedure builds a message box that displays your
pizza type
Dim Message As String
Dim I As Integer
Message = PizzaWhere + vbCr
Message = Message + PizzaSize + " Pizza" + vbCr
Message = Message + PizzaCrust + vbCr
For I = 0 To 5
 If chkTop(I).Value = vbChecked Then Message = Message
+ chkTop(I).Caption + vbCr
Next I
MsgBox Message, vbOKOnly, "Your Pizza"
End Sub
This code forms the first part of a message for a message box by
concatenating the pizza size, crust type, and eating location (vbCr is a
symbolic constant representing a ‘carriage return’ that puts each piece of
ordering information on a separate line). Next, the code cycles through the
six topping check boxes and adds any checked information to the
message. The code then displays the pizza order in a message box.

8. Attach this code to the cmdExit_Click event.

Private Sub cmdExit_Click()
End
End Sub

9. Get the application working. Notice how the different selection buttons work in
their individual groups. Save your project.

10. If you have time, try these modifications:

A. Add a new program button that resets the order form to the initial
default values. You’ll have to reinitialize the three global variables,
reset all check boxes to unchecked, and reset all three option button
groups to their default values.

B. Modify the code so that if no toppings are selected, the message
“Cheese Only” appears on the order form. You’ll need to figure out
a way to see if no check boxes were checked.

3-20 Learn Visual Basic 6.0

List Boxes

· A list box displays a list of items from which the user can select one or more
items. If the number of items exceeds the number that can be displayed, a
scroll bar is automatically added.

· List Box Properties:

Appearance Selects 3-D or flat appearance.
List Array of items in list box.
ListCount Number of items in list.
ListIndex The number of the most recently selected item in

list. If no item is selected, ListIndex = -1.
MultiSelect Controls how items may be selected (0-no multiple

selection allowed, 1-multiple selection allowed, 2-
group selection allowed).

Selected Array with elements set equal to True or False,
depending on whether corresponding list item is
selected.

Sorted True means items are sorted in 'Ascii' order, else
items appear in order added.

Text Text of most recently selected item.

· List Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

· List Box Methods:

AddItem Allows you to insert item in list.
Clear Removes all items from list box.
RemoveItem Removes item from list box, as identified by index

of item to remove.

Examples

lstExample.AddItem "This is an added item" ' adds text string to list
lstExample.Clear ' clears the list box
lstExample.RemoveItem 4 ' removes lstExample.List(4) from list box

Exploring the Visual Basic Toolbox 3-21

· Items in a list box are usually initialized in a Form_Load procedure. It's always
a good idea to Clear a list box before initializing it.

· You've seen list boxes before. In the standard 'Open File' window, the
Directory box is a list box with MultiSelect equal to zero.

Combo Boxes

· The combo box is similar to the list box. The differences are a combo box
includes a text box on top of a list box and only allows selection of one item. In
some cases, the user can type in an alternate response.

· Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with the
deletion of the MultiSelect property and the addition of a Style property.

Appearance Selects 3-D or flat appearance.
List Array of items in list box portion.
ListCount Number of items in list.
ListIndex The number of the most recently selected item in

list. If no item is selected, ListIndex = -1.
Sorted True means items are sorted in 'Ascii' order, else

items appear in order added.
Style Selects the combo box form.

Style = 0, Dropdown combo; user can change
selection.
Style = 1, Simple combo; user can change
selection.
Style = 2, Dropdown combo; user cannot change
selection.

Text Text of most recently selected item.

· Combo Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

3-22 Learn Visual Basic 6.0

· Combo Box Methods:

AddItem Allows you to insert item in list.
Clear Removes all items from list box.
RemoveItem Removes item from list box, as identified by index

of item to remove.

Examples

cboExample.AddItem "This is an added item" ' adds text string to list
cboExample.Clear ' clears the combo box
cboExample.RemoveItem 4 ' removes cboExample.List(4) from list box

· You've seen combo boxes before. In the standard 'Open File' window, the File
Name box is a combo box of Style 2, while the Drive box is a combo box of
Style 3.

Exploring the Visual Basic Toolbox 3-23

Example 3-3

Flight Planner

1. Start a new project. In this example, you select a destination city, a seat
location, and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command
buttons on the form. The form should appear similar to this:

3. Set the form and object properties:

Form1:
BorderStyle 1-Fixed Single
Caption Flight Planner
Name frmFlight

List1:
Name lstCities
Sorted True

Combo1:
Name cboSeat
Style 2-Dropdown List

3-24 Learn Visual Basic 6.0

Combo2:
Name cboMeal
Style 1-Simple
Text [Blank]

(After setting properties for this combo box, resize it until it is large
enough to hold 4 to 5 entries.)

Label1:
Caption Destination City

Label2:
Caption Seat Location

Label3:
Caption Meal Preference

Command1:
Caption &Assign
Name cmdAssign

Command2:
Caption E&xit
Name cmdExit

Now, the form should look like this:

Exploring the Visual Basic Toolbox 3-25

4. Attach this code to the Form_Load procedure:

Private Sub Form_Load()
‘Add city names to list box
lstCities.Clear
lstCities.AddItem "San Diego"
lstCities.AddItem "Los Angeles"
lstCities.AddItem "Orange County"
lstCities.AddItem "Ontario"
lstCities.AddItem "Bakersfield"
lstCities.AddItem "Oakland"
lstCities.AddItem "Sacramento"
lstCities.AddItem "San Jose"
lstCities.AddItem "San Francisco"
lstCities.AddItem "Eureka"
lstCities.AddItem "Eugene"
lstCities.AddItem "Portland"
lstCities.AddItem "Spokane"
lstCities.AddItem "Seattle"
lstCities.ListIndex = 0
‘Add seat types to first combo box
cboSeat.AddItem "Aisle"
cboSeat.AddItem "Middle"
cboSeat.AddItem "Window"
cboSeat.ListIndex = 0
‘Add meal types to second combo box
cboMeal.AddItem "Chicken"
cboMeal.AddItem "Mystery Meat"
cboMeal.AddItem "Kosher"
cboMeal.AddItem "Vegetarian"
cboMeal.AddItem "Fruit Plate"
cboMeal.Text = "No Preference"
End Sub
This code simply initializes the list box and the list box portions of the two
combo boxes.

3-26 Learn Visual Basic 6.0

5. Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign_Click()
‘Build message box that gives your assignment
Dim Message As String
Message = "Destination: " + lstCities.Text + vbCr
Message = Message + "Seat Location: " + cboSeat.Text +
vbCr
Message = Message + "Meal: " + cboMeal.Text + vbCr
MsgBox Message, vbOKOnly + vbInformation, "Your
Assignment"
End Sub
When the Assign button is clicked, this code forms a message box
message by concatenating the selected city (from the list box lstCities),
seat choice (from cboSeat), and the meal preference (from cboMeal).

6. Attach this code to the cmdExit_Click event:

Private Sub cmdExit_Click()
End
End Sub

7. Run the application. Save the project.

Exploring the Visual Basic Toolbox 3-27

Exercise 3

Customer Database Input Screen

A new sports store wants you to develop an input screen for its customer
database. The required input information is:

1. Name
2. Age
3. City of Residence
4. Sex (Male or Female)
5. Activities (Running, Walking, Biking, Swimming, Skiing and/or In-Line

Skating)
6. Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

Set up the screen so that only the Name and Age (use text boxes) and, perhaps,
City (use a combo box) need to be typed; all other inputs should be set with check
boxes and option buttons. When a screen of information is complete, display the
summarized profile in a message box. This profile message box should resemble
this:

3-28 Learn Visual Basic 6.0

My Solution:

Form:

Properties:

Form frmCustomer:
BorderStyle = 1 - Fixed Single
Caption = Customer Profile

CommandButton cmdExit:
Caption = E&xit

Frame Frame3:
Caption = City of Residence
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

ComboBox cboCity:
Sorted = True
Style = 1 - Simple Combo

cmdSho
w

cmdExit

cboCity

txtAge

Frame4 optLevelchkActFrame2

Frame1

optSex

Frame3

Label1

txtName

cmdNew

Label2

Exploring the Visual Basic Toolbox 3-29

CommandButton cmdNew:
Caption = &New Profile

CommandButton cmdShow:
Caption = &Show Profile

Frame Frame4:
Caption = Athletic Level
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

OptionButton optLevel:
Caption = Beginner
Index = 3

OptionButton optLevel:
Caption = Intermediate
Index = 2
Value = True

OptionButton optLevel:
Caption = Advanced
Index = 1

OptionButton optLevel:
Caption = Extreme
Index = 0

Frame Frame1:
Caption = Sex
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

OptionButton optSex:
Caption = Female
Index = 1

OptionButton optSex:
Caption = Male
Index = 0
Value = True

3-30 Learn Visual Basic 6.0

Frame Frame2:
Caption = Activities
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

CheckBox chkAct:
Caption = In-Line Skating
Index = 5

CheckBox chkAct:
Caption = Skiing
Index = 4

CheckBox chkAct:
Caption = Swimming
Index = 3

CheckBox chkAct:
Caption = Biking
Index = 2

CheckBox chkAct:
Caption = Walking
Index = 1

CheckBox chkAct:
Caption = Running
Index = 0

TextBox txtName:
FontName = MS Sans Serif
FontSize = 12

Label Label1:
Caption = Name
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

TextBox txtAge:
FontName = MS Sans Serif
FontSize = 12

Exploring the Visual Basic Toolbox 3-31

Label Label2:
Caption = Age
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

Code:

General Declarations:

Option Explicit
Dim Activity As String

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Blank out name and reset check boxes
Dim I As Integer
txtName.Text = ""
txtAge.Text = ""
For I = 0 To 5
 chkAct(I).Value = vbUnchecked
Next I
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
Dim NoAct As Integer, I As Integer
Dim Msg As String, Pronoun As String

'Check to make sure name entered
If txtName.Text = "" Then
 MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Name Entered"
 Exit Sub

3-32 Learn Visual Basic 6.0

End If

'Check to make sure age entered
If txtAge.Text = "" Then
 MsgBox "The profile requires an age.", vbOKOnly +
vbCritical, "No Age Entered"
 Exit Sub
End If

'Put together customer profile message
Msg = txtName.Text + " is" + Str$(txtAge.Text) + " years
old." + vbCr
If optSex(0).Value = True Then Pronoun = "He " Else Pronoun =
"She "
Msg = Msg + Pronoun + "lives in " + cboCity.Text + "." + vbCr
Msg = Msg + Pronoun + "is a"
If optLevel(3).Value = False Then Msg = Msg + "n " Else Msg =
Msg + " "
Msg = Msg + Activity + " level athlete." + vbCr
NoAct = 0
For I = 0 To 5
 If chkAct(I).Value = vbChecked Then NoAct = NoAct + 1
Next I
If NoAct > 0 Then
 Msg = Msg + "Activities include:" + vbCr
 For I = 0 To 5
 If chkAct(I).Value = vbChecked Then Msg = Msg +
String$(10, 32) + chkAct(I).Caption + vbCr
 Next I
Else
 Msg = Msg + vbCr
End If
MsgBox Msg, vbOKOnly, "Customer Profile"
End Sub

Form Load Event:

Private Sub Form_Load()
'Load combo box with potential city names
cboCity.AddItem "Seattle"
cboCity.Text = "Seattle"
cboCity.AddItem "Bellevue"
cboCity.AddItem "Kirkland"
cboCity.AddItem "Everett"
cboCity.AddItem "Mercer Island"
cboCity.AddItem "Renton"

Exploring the Visual Basic Toolbox 3-33

cboCity.AddItem "Issaquah"
cboCity.AddItem "Kent"
cboCity.AddItem "Bothell"
cboCity.AddItem "Tukwila"
cboCity.AddItem "West Seattle"
cboCity.AddItem "Edmonds"
cboCity.AddItem "Tacoma"
cboCity.AddItem "Federal Way"
cboCity.AddItem "Burien"
cboCity.AddItem "SeaTac"
cboCity.AddItem "Woodinville"
Activity = "intermediate"
End Sub

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)
‘Determine activity level
Select Case Index
Case 0
 Activity = "extreme"
Case 1
 Activity = "advanced"
Case 2
 Activity = "intermediate"
Case 3
 Activity = "beginner"
End Select
End Sub

txtAge KeyPress Event:

Private Sub txtAge_KeyPress(KeyAscii As Integer)
'Only allow numbers for age
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii =
vbKeyBack Then
 Exit Sub
Else
 KeyAscii = 0
End If
End Sub

3-34 Learn Visual Basic 6.0

This page intentionally not left blank.

